Lecture III A Quantum Splitting Principle

Chin-Lung Wang National Taiwan University

January 22, 2019 MIST Workshop, IMS, CUHK

Contents

- QH and analytic continuations
- Quantum Leray–Hirsch in the split case: an example
- (i) Classical splitting and inversion of degenerations
- (ii) Strong virtual pushforward for split *P*¹-bundles
- (iii) Relative type I, II and ancestors

Quantum cohomology

- Let X be smooth projective variety over \mathbb{C} .
- ▶ Basis $T_i \in H = H(X)$, dual $\{T^i\}$, $t = \sum t^i T_i$, $g_{ij} := \langle T_i, T_j \rangle$.
- Genus zero GW formal prepotential $F(t) = \langle \langle \rangle \rangle$:

$$\langle\langle a_1,\ldots,a_m\rangle\rangle=\sum_{\beta\in NE(X)}\sum_{n=0}^{\infty}\frac{q^{\beta}}{n!}\langle a_1,\ldots,a_m,t^{\otimes n}\rangle_{g=0,m+n,\beta}.$$

▶ 3-pt function $F_{ijk} = \partial_{ijk}^3 F = \langle \langle T_i, T_j, T_k \rangle \rangle$, $A_{ij}^k := F_{ijl} g^{lk}$, then

$$T_i *_t T_j = \sum A_{ij}^k(t) T_k.$$

▶ The Dubrovin connection ∇ on $T_0\widehat{H} \otimes \mathbb{C}[\![q^{\bullet}]\!] \times \mathbb{A}^1_z$ is flat:

$$\nabla = d - \frac{1}{z} \sum_{i} dt^{i} \otimes A_{i} = d - \frac{1}{z} \sum_{i} dt^{i} \otimes T_{i} *_{t}.$$

Gromov-Witten invariants

Let $\overline{\mathcal{M}}_{g,n}(X,\beta)$ be the moduli stack of n-pointed genus g stable maps $f:(C;x_1,\ldots,x_n)\to X$ with $f_*[C]=\beta\in H_2(X)$. We have

$$\operatorname{ev}_j: \overline{\mathcal{M}}_{g,n}(X,\beta) \to X, \qquad f \mapsto f(x_j), \qquad 1 \le j \le n.$$

For $\alpha_j \in H^*(X)$, $\psi_j = c_1(x_j^* \omega_{\mathscr{C}/\overline{\mathscr{M}}_{\sigma,n}(X,\beta)})$, the descendant invariant is

$$\left\langle \prod_{j=1}^n \tau_{k_j}(\alpha_j) \right\rangle_{g,\beta}^X = \int_{\left[\overline{\mathscr{M}}_{g,n}(X,\beta)\right]^{\mathrm{vir}}} \prod_j \operatorname{ev}_j^*(\alpha_j) \prod_j \psi_j^{k_j}.$$

When $2g + n \ge 3$, there is a stabilization map

$$\operatorname{st}:\overline{\mathcal{M}}_{g,n}(X,\beta)\to\overline{\mathcal{M}}_{g,n}.$$

Now let $\bar{\psi}_j \in H^2(\overline{\mathscr{M}}_{g,n})$ instead. Then the *ancestor invariant* is

$$\left\langle \prod_{j=1}^n \bar{\tau}_{k_j}(\alpha_j) \right. \left. \right\rangle_{g,\beta}^X = \int_{[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{\mathrm{vir}}} \prod_j \mathrm{ev}_j^*(\alpha_j) \, \mathrm{st}^*(\prod_j \bar{\psi}_j^{k_j}).$$

Cyclic \mathcal{D}^z -modules

 $t = t_0 + t_1 + t_2, t_0 \in H^0, t_1 \in H^2$:

$$\begin{split} J(t,z^{-1}) &= 1 + \frac{t}{z} + \sum_{\beta,n,i} \frac{q^{\beta}}{n!} T_i \left\langle \frac{T^i}{z(z-\psi_1)}, (t)^n \right\rangle_{\beta} \\ &= e^{\frac{t}{z}} + \sum_{\beta \neq 0,n,i} \frac{q^{\beta}}{n!} e^{\frac{t_0+t_1}{z} + (t_1.\beta)} T_i \left\langle \frac{T^i}{z(z-\psi_1)}, (t_2)^n \right\rangle_{\beta}. \end{split}$$

▶ TRR \Longrightarrow QDE (denote by $z\partial_i = z\partial_{t^i} = z\partial_{T_i}$):

$$z\partial_i z\partial_j J = \sum_k A_{ij}^k(t) z\partial_k J.$$

▶ $QH(X) \equiv \text{cyclic } \mathcal{D}^z\text{-module } \mathcal{D}^z J \text{ with basis (frame)}$

$$z\partial_i J \equiv e^{t/z} T_i \pmod{q^{\bullet}} = T_i + \cdots$$

Given an ordinary P^r -flop with extremal ray ℓ , ℓ' resp.

$$f: X \dashrightarrow X'$$

the graph $\Gamma_f \subset X \times X'$ induces an isomorphism of motives

$$\mathscr{F} = [\bar{\Gamma}_f]_* : H(X) \xrightarrow{\sim} H(X'),$$

which preserves the Poincaré pairing. We set

$$\mathscr{F}(q^{\beta}) = q^{\mathscr{F}(\beta)}.$$

Theorem (Analytic continuation in $q^{\ell} = 1/q^{\ell'}$)

F induces an isomorphism of big quantum rings

$$QH(X) \cong QH(X').$$

The results also hold for relative invariants and (relative) ancestors.

Step 1 [LLW 2008]

- Degeneration + Reconstruction reduce the proof to the case of *local models*.
- ▶ Let (S, F, F') consist of two v.b.'s F and F' of rank r + 1 over a smooth S. The f-exc loci $Z \subset X$ and $Z' \subset X'$ are

$$\bar{\psi}: Z = P_S(F) \to S, \qquad \bar{\psi}': Z' = P_S(F') \to S,$$

and the (projective) local model of *f* is

$$X = P_Z(N \oplus \mathscr{O}) \xrightarrow{f} X' = P_{Z'}(N' \oplus \mathscr{O}),$$

where $N = N_{Z/X} \cong \mathscr{O}_Z(-1) \otimes \bar{\psi}^* F'$ and similarly for N'.

- ► The flop f is the blowup of X along Z followed by contracting the exc-divisor $E = Z \times_S Z'$ along the $\bar{\psi}$ -ruling.
- ▶ The local model of f is a functor over the triples (S, F, F')'s.

Step 2 [LLW 2011]

▶ For $F = \bigoplus_{i=0}^{r} L_i$, $F' = \bigoplus_{i=0}^{r} L_i'$ being split bundles, based on [Brown 2009], a quantum Leray–Hirsch theorem is proved:

$$QH(X) \cong_{\mathscr{D}^z} p^*QH(S)[\hat{h},\hat{\xi}]/(\hat{f}_F,\hat{f}_{N\oplus\mathscr{O}}).$$

• Here $\hat{h} = z\partial_h$, $\hat{\xi} = z\partial_{\xi}$, and

$$\hat{f}_F = \Box_{\ell} = \prod_{z} \partial_{h+L_i} - q^{\ell} e^{t^h} \prod_{z} \partial_{\xi-h+L'_i},$$

$$\hat{f}_{N \oplus \mathscr{O}} = \Box_{\gamma} = z \partial_{\xi} \prod_{z} \partial_{\xi-h+L'_i} - q^{\gamma} e^{t^{\xi}},$$

are the Picard–Fuchs operators which are the "quantized version" of the Chern polynomials.

► The pullback $p^*QH(S)$ is an admissible lifting of the Dubrovin connection on H(S) to H(X):

Let $D = t^h h + t^{\xi} \xi$ be the relative divisor class, $\bar{t} \in H(S)$, then

$$z\partial_i z\partial_j = \sum_{\bar{\beta} \in NE(S), k} q^{\beta} e^{D.\bar{\beta}^*} [A_S]_{ij, \bar{\beta}}^k(\bar{t}) z\partial_k \mathbf{D}_{\beta}(z)$$

for some *admissible lifting* $\beta \in NE(X)$ and differential operator

$$\begin{split} \mathbf{D}_{\beta}(z) &:= \prod_{m=0}^{-\xi.\beta-1} (z\partial_{\xi} - mz) \times \\ &\prod_{i=0}^{r} \left(\prod_{m=0}^{-(h+L_i).\beta-1} (z\partial_{h+L_i} - mz) \prod_{m=0}^{-(\xi-h+L_i').\beta-1} (z\partial_{\xi-h+L_i'} - mz) \right). \end{split}$$

such that
$$-(h+L_i).\beta \ge 0$$
, $-(\xi-h+L_i').\beta \ge 0$ and $-\xi.\beta \ge 0$.

 β exists, but might not be unique. Nevertheless, $\mathbf{D}_{\beta}(z)$ is well-defined modulo the Picard–Fuchs ideal $\langle \Box_{\ell}, \Box_{\gamma} \rangle$.

Now we may compute the first order system

$$z\partial_{t^a}(\hat{T}_i)=(\hat{T}_i)C_a(z,q^{\bullet}), \qquad t^a=t^h,t^{\xi},\overline{t}^i.$$

under the naive frame $\hat{T}_i = z \partial_{\bar{t}^i} (z \partial_{t^h})^j (z \partial_{t^{\bar{\xi}}})^{k'}$ s.

- ▶ This is "equivalent" to $\mathcal{D}^z J^X$ as \mathcal{D}^z -modules.
- ▶ The analytic continuation of \mathcal{D}^z -modules in q^ℓ follows easily from the above presentation of C_a and

$$\mathscr{F}: \langle \square_{\ell}, \square_{\gamma} \rangle \cong \langle \square_{\ell'}, \square_{\gamma'} \rangle.$$

- ▶ To get QH(X) from the \mathcal{D}^z -module, we need BF/GMT: Birkhoff factorization/generalized mirror transform.
- ▶ A technical induction was performed so that B, τ are compatible with analytic continuations.

Example

Let $f: X \dashrightarrow X'$ be a P^1 -flop, $(S, F, F') = (P^1, \mathcal{O} \oplus \mathcal{O}, \mathcal{O} \oplus \mathcal{O}(1))$. Write $H(S) = \mathbb{C}[p]/(p^2)$ with Chern polynomials

$$f_F(h) = h^2$$
, $f_{N \oplus \mathscr{O}}(\xi) = \xi(\xi - h)(\xi - h + p)$.

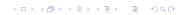
Then $H = H(X) = H(S)[h, \xi]/(f_F, f_{N \oplus \mathscr{O}})$ has dimension N = 12 with basis $\{T_i \mid 0 \le i \le 11\}$ being

1,
$$h$$
, ξ , p , $h\xi$, hp , ξ^2 , ξp , $h\xi^2$, $h\xi p$, $\xi^2 p$, $h\xi^2 p$.

Denote by $q_1 = q^{\ell}e^{t^1}$, $q_2 = q^{\gamma}e^{t^2}$, $\bar{q} = q^be^{t^3}$, where $b = [S] \cong [P^1]$. The Picard-Fuchs operators are

$$\Box_{\ell} = (z\partial_{h})^{2} - q_{1}z\partial_{\xi-h}z\partial_{\xi-h+p},$$

$$\Box_{\gamma} = z\partial_{\xi}z\partial_{\xi-h}z\partial_{\xi-h+p} - q_{2}.$$



They lead to a Grobner basis:

$$(z\partial_h)^2 = \mathbf{f}(q_1) ((z\partial_{\xi})^2 - z\partial_p z\partial_h + z\partial_p z\partial_{\xi} - 2z\partial_h z\partial_{\xi}),$$

$$(z\partial_{\xi})^3 = q_2(1-q_1) - z\partial_p (z\partial_{\xi})^2 + 2z\partial_h (z\partial_{\xi})^2 + z\partial_p z\partial_h z\partial_{\xi}.$$

Here $\mathbf{f}(q) := q/(1-(-1)^{r+1}q)$ which satisfies

$$\mathbf{f}(q) + \mathbf{f}(q^{-1}) = (-1)^r.$$

 $H(S) = \mathbb{C}\mathbf{1} \oplus \mathbb{C}p$ has only small parameter \bar{q} with QDE

$$z\partial_p(z\partial_1,z\partial_p)=(z\partial_1,z\partial_p)\begin{pmatrix}0&\bar{q}\\1&0\end{pmatrix}.$$

We have admissible lifting $b^I = b - \gamma$ and $\mathbf{D}_b = z \partial_{\xi} z \partial_{\xi - h}$, hence the lifted QDE:

$$(z\partial_p)^2 = \bar{q}q_2^{-1}z\partial_{\xi}z\partial_{\xi-h}.$$

We calculate C_a in $z\partial_a \hat{T}_j = \sum_k C_{aj}^k(z)\hat{T}_k$.

Let $q^* = \bar{q}q_2^{-1}$ be the chosen admissible lift. Set $\mathbf{g} = \mathbf{f}(q^*)$, $A = q_2 - q_1q_2$, $S = q_2 + q_1q_2$. Then

$$\mathcal{L}_{\xi} = egin{bmatrix} A & zq_1q_2 & zA\mathbf{g} & z^2q_1q_2\mathbf{g} \\ A & zA\mathbf{g} \\ 1 & 2q_1q_2 & -q_2\mathbf{g} & zq_1q_2\mathbf{g} \\ & q_1q_2 & A(1+\mathbf{g}) & zq_1q_2(1+2\mathbf{g}) \\ 1 & z^2\mathbf{g} & -q_2q^*(1+\mathbf{g}) \\ & 1 & z^2\mathbf{g} & -q_2q^*(1+\mathbf{g}) \\ & 1 & q_1q_2(2+\mathbf{g}) \\ & 1 & 2 & z\mathbf{g} & -z^2\mathbf{g} \\ & 1 & 2z\mathbf{g} & \\ & -1 & 1 & 2+\mathbf{g} & -2z\mathbf{g} \end{bmatrix}$$

and $C_p =$

$$\begin{bmatrix} & -q_1q_2q^* & Aq^* & zq_1q_2q^* & z(q_1q_2q^* - A\mathbf{g}) & -z^2q_1q_2\mathbf{g} \\ & Aq^* & Aq^* & -zA\mathbf{g} \\ & q_1q_2q^* & (S-q_1q_2q^*)\mathbf{g} & -zq_1q_2\mathbf{g} \\ & q_1q_2q^* & q_1q_2q^* - A\mathbf{g} & -2zq_1q_2\mathbf{g} \\ & -q^* & zq^* & -z^2\mathbf{g} & (A+q_1q_2q^*)\mathbf{g} \\ 1 & & & -A\mathbf{g} \\ & q^* & -zq^* & z^2\mathbf{g} & q_1q_2q^* \\ & 1 & & & -q_1q_2\mathbf{g} \\ & 1 & & & & -q_1q_2\mathbf{g} \\ & & q^* & q^* & -zq^* & z(q^*-2)\mathbf{g} & z^2\mathbf{g} \\ & & 1 & q^* & -2z\mathbf{g} \\ & & 1 & q^* & -2z\mathbf{g} \\ & & 1 & -q^* & 2z\mathbf{g} \end{bmatrix}$$

A gauge transform is needed to remove all appearances of z. In this example GMT is not needed since the first column vectors in C_a 's are correct: $\hat{T}_i * \hat{\mathbf{1}} = \hat{T}_i$.

Step 3: splitting principle [L-L-Qu-W 2014]

Proposition

Given a \mathbb{C}^k -bundle $F \to S$, there exists a sequence of blow-ups on smooth centers $\phi : \tilde{S} \to S$ such that there is a filtration of subbundles

$$0 = F_0 \subset F_1 \subset \ldots \subset F_k = \phi^* F$$

with $\operatorname{rk} F_{i+1}/F_i = 1$ for all i; ϕ^*F can be deformed to a split bundle.

Proof.

Consider the *complete flag bundle* over *S* and a *rational section s*:

$$\mathcal{F}_S(F) \xrightarrow{p} S.$$

Let $\phi : \tilde{S} \to S$ resolves s. Then ϕ^*F admits a complete flag, and there is a deformation of sending all extension classes to 0.

In the classical setting

$$p^*: H(S) \hookrightarrow H(\mathcal{F}_S(F)), \qquad \phi^*: H(S) \hookrightarrow H(\tilde{S})$$

are both ring monomorphisms.

- ▶ They lead to the *classical splitting principle*.
- ► Such functorialties are not yet available for *QH*.
- ▶ Instead, we develop a *quantum splitting principle* to study

$$QH(S) \dashrightarrow QH(\mathcal{F}_S(F)), \qquad QH(S) \dashrightarrow QH(\tilde{S}).$$

▶ In particular, *F*-invariance (analytic continuations)

$$\mathscr{F}: QH(X_{(S,F,F')}) \cong QH(X'_{(S,F,F')})$$

with $\mathscr{F}q^{\ell} = (q^{\ell'})^{-1}$ is reduced to the split case.

Starting with $(S_0, F_0, F'_0) = (S, F, F')$, we construct $(S_i, F_i, F'_i)_{i \ge 0}$:

$$\phi_i: S_{i+1} = \mathrm{Bl}_{T_i} S_i \to S_i$$

for some smooth $T_i \subset S_i$, $F_{i+1} = \phi_i^* F_i$ and $F'_{i+1} = \phi_i^* F'_i$.

- ▶ Will show the \mathscr{F} -invariance for (S_i, F_i, F'_i) can be reduced to the \mathscr{F} -invariance for $(S_{i+1}, F_{i+1}, F'_{i+1})$.
- ▶ The problem is then solved for $S_{i+1} = \tilde{S}$, the split case, since GW theory is invariant under smooth deformations.

We consider the deformation to the normal cone for $T_i \hookrightarrow S_i$:

$$\Phi_i : \mathbf{S} = \mathrm{Bl}_{T_i \times \{0\}}(S_i \times \mathbb{A}^1) \to \mathbb{A}^1,$$

$$\mathbf{S}_t = S_i \sim S_{i+1} \cup_{E_i} P_i = \mathbf{S}_0,$$

$$E_i = \operatorname{Exc} \phi_i = P_{T_i}(N_{T_i/S_i})$$
, and $P_i = \operatorname{Exc} \Phi_i = P_{T_i}(N_{T_i/S_i} \oplus \mathscr{O})$.

► For simplicity, we write

$$X_{S_i} \equiv X_{(S_i,F_i,F_i')}$$

etc. when the bundles are from pullbacks (restrictions).

▶ The degeneration formula in GW theory says that

$$\langle \alpha \rangle^{X_{S_i}} = \sum_{\vec{\mu}} \langle \alpha_1 \mid \vec{\mu} \rangle^{\bullet(X_{S_{i+1}}, X_{E_i})} \langle \alpha_2 \mid \vec{\mu}^{\vee} \rangle^{\bullet(X_{P_i}, X_{E_i})}$$

where $\vec{\mu} = \{(\mu_i, e_i)\}$ is a $H(X_{E_i})$ -weighted partition.

▶ Thus, for both factors, we need to control

relative invariants for a smooth divisor pair (X_S, X_D)

by the absolute invariants of X_S and X_D .

► A trivial degeneration (to the normal cone)

$$S \sim S \cup_D P$$
, $P = P_D(N \oplus \mathscr{O}) \xrightarrow{\pi} D$

leads to

$$\langle \alpha \rangle^{X_S} = \sum_{\vec{\mu}} \langle \alpha_1 \mid \vec{\mu} \rangle^{\bullet(X_S, X_D)} \langle \alpha_2 \mid \vec{\mu}^{\vee} \rangle^{\bullet(X_P, X_D)}.$$

- ▶ The problem becomes "inversion of this linear system", with coefficients being relative invariants of (X_P, X_D) .
- ▶ Here $X_P \to X_D$ is a split P^1 -bundle arising from $\pi : P \to D$.
- ▶ Since $D = P_T(N_{T/S}) \rightarrow T$ has

$$\dim T < \dim S$$
.

 \implies the absolute invariants for X_P are handled inductively.

- ▶ To handle (X_P, X_D) , fiberwise localization was used in [Maulik–Pandharipande 2006].
- ▶ Among other technical issues, localizations create *descendants* which breaks *F*-invariance.

- Now, to treat general $P = P_D(N \oplus \mathcal{O})$, localizations are replaced by *more complex degeneration argument* and
- ▶ the strong virtual pushforward property, which extends earlier works of [Hsin-Hong Lai 2008, Manolache 2012] from absolute GW to relative GW.

Review of relative obstruction theory

The universal curve $\mathscr{C} = \overline{\mathscr{M}}_{g,n+1}(X,\beta)$ with $f = \operatorname{ev}_{n+1} : \mathscr{C} \to X$:

$$\mathcal{C} \xrightarrow{f} X$$

$$\downarrow^{\pi}$$

$$\overline{\mathcal{M}}_{g,n}(X,\beta),$$

leads to a perfect obstruction theory and virtual cycle

$$E^{ullet} := (R\pi_* f^* T_X)^{\vee} \to \mathbb{L}_{\overline{\mathscr{M}}}, \quad \text{and} \quad [\overline{\mathscr{M}}_{g,n}(X,\beta)]^{\mathrm{vir}}$$

[Li-Tian 1998, Behrend-Fantachi 1997].

Also a relative theory for

$$i: X \hookrightarrow X'$$
 with $i_*: A_1(X) \hookrightarrow A_1(X')$

Then

$$\overline{i}:\overline{\mathcal{M}}_{g,n}(X,\beta)\to\overline{\mathcal{M}}_{g,n}(X',i_*\beta),$$

with

$$E_{\bar{i}}^{\bullet} := (R\pi_* f^* \mathbb{L}_i^{\vee})^{\vee} \to \mathbb{L}_{\bar{i}}.$$

It is perfect if g = 0 and X' is convex (e.g. homogeneous).

Then the virtual pull-back formula holda:

$$[\overline{\mathcal{M}}_{0,n}(X,\beta)]^{\mathrm{vir}} = \overline{i}^! [\overline{\mathcal{M}}_{0,n}(X',i_*\beta)]^{\mathrm{vir}}.$$

[Manolache 2012]:

Strong Virtual Pushforward for Relative GW

► Consider the split *P*¹-bundle

$$\pi: Y = P_X(L \oplus \mathscr{O}) \to X$$
,

which has two sections

$$i_0: Y_0 \hookrightarrow Y, \qquad i_\infty: Y_\infty \hookrightarrow Y.$$

- ▶ Relative/Log GW invariants on (Y, Y_0) and (Y, Y_∞) are called *type I*;
- ▶ those on $(Y, Y_0 \sqcup Y_\infty)$ are called *type II*.
- ▶ Relative/Log GW are equivalent for g = 0 [Abramovich et. al 2014].

▶ Let $(Y, Y_0 \sqcup Y_\infty)$, (Y, Y_0) and (Y, Y_∞) denote the log schemes, which are log smooth and integral. And

$$\overline{\mathcal{M}}_{0,n}(Y;\mu,\nu) := \overline{\mathcal{M}}_{0,n}((Y,Y_0 \sqcup Y_\infty),\beta;\mu,\nu)$$
 etc.

be the log stack of stable log maps with curve class β .

• μ , ν are partitions of

$$d_0 = \int_{\beta} Y_0, \qquad d_{\infty} = \int_{\beta} Y_{\infty},$$

(contact orders of marked points in Y_0 and Y_{∞}).

▶ When $\theta := \pi_* \beta \neq 0$ or $n \geq 3$, we have induced maps:

$$p: \overline{\mathcal{M}}_{0,n}(Y;\mu,\nu) \to \overline{\mathcal{M}}_{0,n}(X,\theta),$$

$$q: \overline{\mathcal{M}}_{0,n}(Y;\nu) \to \overline{\mathcal{M}}_{0,n}(X,\theta).$$

Lemma (Virtual dimension count)

- 1. $\dim \left[\overline{\mathcal{M}}_{g,n}(Y;\mu,\nu)\right]^{\mathrm{vir}} = \dim \left[\overline{\mathcal{M}}_{g,n}(X,\theta)\right]^{\mathrm{vir}} + 1 g.$
- 2. $\dim [\overline{\mathcal{M}}_{g,n}(Y;\nu)]^{\mathrm{vir}} = \dim [\overline{\mathcal{M}}_{g,n}(X,\theta)]^{\mathrm{vir}} + 1 g + \int_{\beta} Y_0.$

Proof. For log moduli stack we need to impose conditions by the contact orders:

In (1) it is $d_0 + d_\infty$ and in (2) it is d_∞ .

Now

$$c_1(Y).\beta = (\pi^*c_1(X) + Y_0 + Y_\infty).\beta = c_1(X).\theta + d_0 + d_\infty.$$

Also

$$(\dim Y - \dim X)(1-g) = 1-g.$$

Proposition (Strong virtual pushforward for g = 0)

1. In $A_*(\overline{\mathcal{M}}_{0,n}(X,\theta))$, there exists $N(\mu,\nu) \in \mathbb{Q}$ such that

$$\begin{split} p_*[\overline{\mathcal{M}}_{0,n}(Y;\mu,\nu)]^{\mathrm{vir}} &= 0, \\ p_*([\overline{\mathcal{M}}_{0,n}(Y;\mu,\nu)]^{\mathrm{vir}} \cap \mathrm{ev}_1^*[Y_0]) &= N(\mu,\nu)[\overline{\mathcal{M}}_{0,n}(X,\theta)]^{\mathrm{vir}}. \end{split}$$

2. Assume $\int_{\beta} Y_0 \geq 0$, then $q_*[\overline{\mathcal{M}}_{0,n}(Y;\nu)]^{vir} = 0$.

Proof. Choose $M \in \text{Pic } X$ such that M and $L \otimes M$ are both very ample. Then we have a cartesian diagram of embeddings

$$Y \xrightarrow{j} P(\mathcal{O}(-1,1) \oplus \mathcal{O})$$

$$\pi \downarrow \qquad \qquad \tilde{\pi} \downarrow \qquad \qquad \tilde{\pi} \downarrow \qquad \qquad X \xrightarrow{i} P^{|M|} \times P^{|L \otimes M|},$$

with $L = i^* \mathcal{O}(-1, 1)$. The proposition holds for $\tilde{\pi}$.

It induces a cartesian diagram between (log) stacks

$$\overline{\mathcal{M}}_{0,n}\left(Y;\mu,\nu\right) \xrightarrow{\bar{j}} \overline{\mathcal{M}}_{0,n}\left(P(\mathcal{O}(-1,1)\oplus\mathcal{O});\mu,\nu\right)$$

$$\downarrow^{p} \qquad \qquad \downarrow^{\bar{p}}$$

$$\overline{\mathcal{M}}_{0,n}\left(X,\theta\right) \xrightarrow{\bar{i}} \overline{\mathcal{M}}_{0,n}(P^{|M|}\times P^{|L\otimes M|},(\int_{\theta}M,\int_{\theta}L\otimes M)).$$

The relative perfect obstruction theories $E_{\bar{i}}^{\bullet} \to \mathbb{L}_{\bar{i}}$ and $E_{\bar{j}}^{\bullet} \to \mathbb{L}_{\bar{j}}$ fit in

$$E_{\bar{j}}^{\bullet} \longrightarrow \mathbb{L}_{\bar{j}}$$

$$\uparrow \approx \qquad \uparrow$$

$$p^* E_{\bar{i}}^{\bullet} \longrightarrow p^* \mathbb{L}_{\bar{i}}$$

since $p^*\mathbb{L}_i \cong \mathbb{L}_j$ (cf. Manolache). Now $\bar{i}^!$ and $\bar{j}^!$ pullback virtual cycles. The results for (π, p) follow from that for $(\tilde{\pi}, \tilde{p})$.

Back to (X_P, X_D) , i.e. type I invariants

▶ Recall π : $P = P_D(N \oplus \mathscr{O}) \to D$, with $P_0, P_\infty \cong D$, induces

$$\pi: X_P = P_{X_D}(L \oplus \mathscr{O}) \to X_D$$
,

with $L = N_D|_{X_D}$ and sections $X_{P_0}, X_{P_\infty} \cong X_D$.

- ▶ A *non-vanishing theorem* modelled on $(P^1, \{0\}) \times X_{pt}$ is proved to show the invertibility of the linear system.
- ▶ Claim: under the trivial degenerations

$$P \sim P \cup_{P_{\infty}} P$$
, $(P, P_0) \sim (P, P_0) \cup_{P_{\infty}} P$,

the "strong virtual pushforward" and "TRR for ancestors" \Longrightarrow type I invariants are determined by absolute, type II, and rubber invariants modulo lower degree ones.

► For $X_P \to Z_P \to P$, a class $\beta \in NE(X_P)$ has $(\beta_P, d) \in NE(P) \times \mathbb{Z}$ with $d = \int_{\beta} \xi$. The generating series

$$\langle \alpha \rangle_{(\beta_P,d)}^{X_P} := \sum_{\beta \in (\beta_P,d)} \langle \alpha \rangle_{\beta}^{X_P} q^{\beta}$$

is a sum over the extremal ray. Similarly for type I, II, etc.

▶ Then for ω being pullback insertions from X_D , we have

$$\left\langle \vec{v} \mid \omega \cdot \prod_{i=1}^{k} i_{\infty*}(\alpha_{i}) \right\rangle_{(\beta_{P},d)}^{(X_{P},X_{P_{\infty}})} =$$

$$\sum_{I,\eta=(\Gamma_{1},\Gamma_{2})} C_{\eta} \left\langle \vec{v} \mid \omega_{1} \cdot \prod_{i=1}^{k} i_{\infty*}(\alpha_{i}) \mid \mu,e^{I} \right\rangle_{\Gamma_{1}}^{\bullet} \cdot \left\langle \mu,e_{I} \mid \omega_{2} \right\rangle_{\Gamma_{2}}^{\bullet}$$

spanned by type II and type I series with pullback insertions.

• Moreover, if $\int_{\beta_P} P_0 \ge 0$ then $\langle \omega \mid \vec{v} \rangle_{\beta_{\varsigma},d}^{(X_P,X_{P_\infty})} = 0$.

Proposition (Type I reduction)

Assume $\int_{\beta_P} P_0 < 0$. An ordering is introduced on $\{\vec{v}\}$ such that

1. If $\vec{v} = \{(v_j, B_j)\} \neq \emptyset$ then there exists $C(\vec{v}) > 0$, $k(\vec{v}) \in \mathbb{Z}_{\geq 0}$,

$$C(\vec{v}) \langle \, \omega \mid \vec{v} \, \rangle_{(\beta_P,d)}^{(X_P,X_{P_\infty})} - \left\langle \, \omega \cdot [X_{P_\infty}]^{k(\vec{v})} \cdot \prod_j \bar{\tau}_{v_j-1}(i_{\infty*}(B_j)) \, \right\rangle_{(\beta_P,d)}^{X_P}$$

is generated by "relative and rubber series" on X_P of class at most (β_P, d) , and those of (X_P, X_{P_∞}) involving class (β_P, d) whose orders are lower than $\langle \omega | \vec{v} \rangle_{(\beta_P, d)}$.

2. If $\vec{v} = \emptyset$ then

$$\langle \omega \mid \vec{v} \rangle_{(\beta_P,d)}^{(X_P,X_{P_{\infty}})} - \langle \omega \rangle_{(\beta_P,d)}^{X_P}$$

is generated by series of relative invariants on X_P with curve classes lower than (β_P, d) .

Theorem (Type II invariance)

 \mathscr{F} -invariance for X_D implies \mathscr{F} -invariance for $(X_P, X_{P_0} \sqcup X_{P_\infty})$.

► For fiber class inv., i.e. $\beta \in NE(X_P/D)$, they are reduced to the cup product on a birational $D' \to D$ and the case

$$(P^1, \{0, \infty\}) \times X_{\operatorname{pt}}.$$

Thus we consider non-fiber class type II-inv.

- ▶ Let $k \ge 0$ be the number of non-pullback insertions in $\pi : X_P \to X_D$. If $k \le 1$, the strong pushforward (1) applies.
- ▶ If $k \ge 2$, since

$$[X_{P_0}] - [X_{P_\infty}] = \pi^* c_1(N_{X_D/X_P}),$$

modulo type II-inv with k-1 non-pullback insertions, we may assume one is $i_{0*}(\alpha)$ and the others are $i_{\infty*}(\alpha_i)$.

The family $W = \operatorname{Bl}_{X_{P_{\infty}} \times \{0\}} X_P \times \mathbb{A}^1 \to X_P \times \mathbb{A}^1$ gives

$$\left\langle \vec{\mu} \mid \omega \cdot i_{0*}(\alpha) \prod_{i=1}^{k-1} i_{\infty*}(\alpha_i) \mid \vec{v} \right\rangle_{(\beta_P, d)}^{(X_P, X_{P_0}, X_{P_\infty})} =$$

$$\sum_{I, \eta} C_{\eta} \left\langle \vec{\mu} \mid \omega_1 \cdot i_{0*}(\alpha) \mid \lambda, e^I \right\rangle_{\Gamma_1}^{\bullet} \left\langle \lambda, e_I \mid \omega_2 \cdot \prod_{i=1}^{k-1} i_{\infty*}(\alpha_i) \mid \vec{v} \right\rangle_{\Gamma_2}^{\bullet},$$

where $\eta = (\Gamma_1, \Gamma_2)$ is the splitting type.

- ▶ Here ω , ω ₁, ω ₂ are pullbacks insertions from X_D.
- ▶ The RHS is determined by type II generating functions with at most k-1 non-pullback insertions.
- ▶ This relation is compatible with \mathscr{F} -invariance, and the theorem follows by induction on $k \in \mathbb{N}$.

We omit the discussion on rubber calculus.

QED